Solvent-Augmented Mineralization of Pyrene by a Mycobacterium sp.

نویسندگان

  • I Y Jimenez
  • R Bartha
چکیده

The biodegradation of polycyclic aromatic hydrocarbon pollutants is constrained, in part, by their solid physical state and very low water solubility. Searching for ways to overcome these limitations, we isolated from soil a bacterium capable of growing on pyrene as a sole source of carbon and energy. Acid-fast stain, morphology, and fatty acid profile identified it as a Mycobacterium sp. In a mineral salts solution, the isolate mineralized 50% of a 250-(mu)g/ml concentration of [(sup14)C]pyrene in 2 to 3 days. Detergent below the critical micelle concentration increased the pyrene mineralization rate to 154%, but above the critical micelle concentration, the detergent severely inhibited pyrene mineralization. The water-miscible solvent polyethylene glycol was inhibitory. The hydrophobic solvents heptamethylnonane, decalin, phenyldecane, and diphenylmethane were also inhibitory at several concentrations tested, but the addition of paraffin oil, squalene, squalane, tridecylcyclohexane, and cis-9-tricosene at 0.8% (vol/vol) doubled pyrene mineralization rates by the Mycobacterium sp. without being utilized themselves. The Mycobacterium sp. was found to have high cell surface hydrophobicity and adhered to the emulsified solvent droplets that also contained the dissolved pyrene, facilitating its mass transfer to the degrading bacteria. Cells physically adhering to solvent droplets metabolized pyrene 8.5 times as fast as cells suspended in the aqueous medium. An enhanced mass transfer of polycyclic aromatic hydrocarbon compounds to microorganisms by suitable hydrophobic solvents might allow the development of solvent-augmented biodegradation techniques for use in aqueous or slurry-type bioreactors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem.

Microcosm studies were conducted to evaluate the survival and performance of a recently discovered polycyclic aromatic hydrocarbon (PAH)-degrading Mycobacterium sp. when this organism was added to sediment and water from a pristine ecosystem. Microcosms inoculated with the Mycobacterium sp. showed enhanced mineralization, singly and as components in a mixture, of 2-methylnaphthalene, phenanthre...

متن کامل

Pyrene mineralization by Mycobacterium sp. strain KMS in a barley rhizosphere.

To determine whether the soil Mycobacterium isolate KMS would mineralize pyrene under rhizosphere conditions, a microcosm system was established to collect radioactive carbon dioxide released from the labeled polycyclic aromatic hydrocarbon. Microcosms were designed as sealed, flow-through systems that allowed the growth of plants. Experiments were conducted to evaluate mineralization of 14C-la...

متن کامل

Stimulation of pyrene mineralization in freshwater sediments by bacterial and plant bioaugmentation.

As a means to study the fate of polycyclic aromatic hydrocarbons (PAHs) in freshwater sediments, pyrene mineralization was examined in microcosms spiked with [14C]pyrene. Some microcosms were planted with reeds (Phragmites australis) and/or inoculated with a pyrene-degrading strain, Mycobacterium sp. 6PY1. Mineralization rates recorded over a 61 d period showed that reeds promoted a significant...

متن کامل

Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils.

Degradative strains of fast-growing Mycobacterium spp. are commonly isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Little is known, however, about the ecology and diversity of indigenous populations of these fast-growing mycobacteria in contaminated environments. In the present study 16S rRNA genes were PCR amplified using Mycobacterium-specific primers and separated by...

متن کامل

13C NMR analysis of biologically produced pyrene residues by Mycobacterium sp. KMS in the presence of humic acid.

Cultures of the pyrene degrading Mycobacterium sp. KMS were incubated with [4-13C]pyrene or [4,5,9,10-14C]pyrene with and without a soil humic acid standard to characterize the chemical nature of the produced residues and evaluate the potential for bonding reactions with humic acid. Cultures were subjected to a "humic acid/ humin" separation at acidic pH, a duplicate separation followed by solv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 62 7  شماره 

صفحات  -

تاریخ انتشار 1996